3.5 Регулятор потока - УКЦ

Регулятор потока служит для дозированной подачи жидкого хладагента из области высокого давления (от конденсатора) в область низкого давления (к испарителю).

Самым простым регулятором потока является свёрнутая в спираль тонкая длинная трубка, называемая капиллярной трубкой, диаметром _0,6 — 2,25 мм_ различной длины.

Капиллярные трубки наиболее широко применяются в кондиционерах Сплит — систем малой мощности. Это обусловлено их низкой стоимостью, простой конструкции и надёжностью эксплуатации.

Капиллярная трубка надёжно функционирует как в условиях постоянной нагрузки (постоянных давлений нагнетания и всасывания), так и на переходных режимах.

Однако в эксплуатации бывают случаи изменения нагрузки испарителя или колебания давления нагнетания компрессора, которые могут привести к недостаточному или избыточному питанию испарителя хладагентом. Это связано с тем, что расход хладагента через трубку зависит только от перепада давлений на трубке.

+_Например:_+

# при понижении давления конденсации из-за снижения окружающей температуры, заполнение испарителя будет недостаточно, вследствие чего _снизится_ — холодо производительность;
# при снижении тепловой нагрузки на испаритель весь жидкий хладагент _не будет_ выкипать в испарителе, может попасть в компрессор, повредить его клапаны и подшипники. Это явление называется «гидравлическим ударом».

В более мощных установках применяется терморегулирующий вентиль (_ТРВ_), регулирующий подачу хладагента в испаритель таким образом, чтобы поддерживать заданное давление испарения и перегрев в испарителе при изменении условий работы холодильной машины.

На Рисунке 19 показана схема ТРВ с внутренним уравниванием для холодильных машин малой и средней мощности.

+_Схема терморегулирующего вентиля (ТРВ) с внутренним уравниванием._+

Схема терморегулирующего вентиля  (ТРВ)  с внутренним уравниванием

Рисунок 19
1 — ТРВ;  4 — мембрана;
2 — пружина;  5 — испаритель;
3 — регулировочный винт;  6 — термо баллон.

Расход хладагента через ТРВ определяется проходным сечением регулирующего клапана.

На регулирующую мембрану ( 4 ) воздействует усилие пружины ( 2 ) и давление за клапаном — давление испарения, направленное на закрытие клапана. Над мембраной ( 4 ) термо баллоном ( 6 ) создаётся давление, направленное на открытие клапана.

Термо баллон крепится к фреонопроводу на выходе испарителя, поэтому давление в баллоне и, следовательно, над мембраной, определяется температурой на выходе испарителя (или перегревом в испарителе).

При увеличении температуры наружного воздуха хладагент начинает кипеть более интенсивно. Перегрев хладагента увеличивается и соответственно растёт температура термо баллона. Возросшее давление в баллоне воздействует на мембрану _ТРВ_ и открывает клапан, увеличивая подачу хладагента в испаритель и восстанавливая состояние равновесия.

При уменьшении температуры наружного воздуха процесс происходит в обратную сторону. _ТРВ_ прикрывается и уменьшает подачу хладагента в испаритель.

Регулировкой настройки пружины ( 2 ) можно изменять настройку ТРВ, задавая давление испарения и величину перегрева.

Однако при изменении гидравлического сопротивления испарителя вследствие варьирования условий работы холодильной машины ТРВ с внутренним уравниванием не позволяет точно поддерживать постоянное давление испарения на выходе.

На Рисунке 20 показана схема ТРВ с внешним уравниванием.

+_Схема терморегулирующего вентиля (ТРВ) с внешним уравниванием._+

Схема терморегулирующего вентиля  (ТРВ)  с внешним  уравниванием

Рисунок 20
1 — ТРВ;  4 — мембрана;
2 — пружина;  5 — испаритель;
3 — регулировочный винт;  6 — термо баллон;
7 — управляющая линия.

В холодильных машинах средней и большой мощности при регулировании мощности применяют _ТРВ_ с внешним уравниванием, в котором давление замеряется не за клапаном, а на выходе из испарителя с помощью дополнительной управляющей трубки ( 7 ). Благодаря такому подключению, _ТРВ_ обеспечивает стабильное поддержание давление испарения и перегрева при переменном гидравлическом сопротивлении испарителя.