Тема 6. Расчет воздухообмена при кондиционировании : «Расчёт теплового баланса, поступления влаги, воздухообмена, построение J- d диаграмм. Мульти зональное кондиционирование. Примеры решений» : Самоподготовка : АНО ДПО «УКЦ «УНИВЕРСИТЕТ КЛИМАТА»

Тема 6. Расчет воздухообмена при кондиционировании

Расчет воздухообмена при кондиционировании

Теплый период года — ТП.

1. При кондиционировании воздуха в тёплый период года — ТП изначально принимаются оптимальные параметры внутреннего воздуха в рабочей зоне помещения:

tВ = 20 ÷ 22ºC;   φВ = 40 ÷ 65%.

2. Границы оптимальных параметров при кондиционировании наносят на J-d диаграмму (см. рисунок 1).

3. Для достижения оптимальных параметров внутреннего воздуха в рабочей зоне помещения в тёплый период года — ТП требуется охлаждение наружного приточного воздуха.

4. При наличии тепловых избытков в помещении в тёплый период года — ТП, а также учитывая, что приточный воздух охлаждается, целесообразно выбрать из зоны оптимальных параметров наибольшую температуру

tВ = 22ºC

и наибольшую относительную влажность внутреннего воздуха в рабочей зоне помещения

φВ = 65%.

Получим на J-d диаграмме точку внутреннего воздуха — (•) В.

5. Составляем тепловой баланс помещения по тёплому периоду года — ТП:

  • по явному теплу ∑QТПЯ
  • по полному теплу ∑QТПП

6. Рассчитываем поступления влаги в помещение

∑W

7. Определяем тепловую напряженность помещения по формуле:

Определяем тепловую напряженность помещения

где: V — объем помещения, м3.

8. Исходя из величины теплового напряжения, находим градиент нарастания температуры по высоте помещения.

Градиент температуры воздуха по высоте помещений общественных и гражданских зданий.

Тепловая напряженность помещения QЯ/Vпом.grad t, °C
кДж/м3Вт/м3
Более 80Более 230,8 ÷ 1,5
40 ÷ 8010 ÷ 230,3 ÷ 1,2
Менее 40Менее 100 ÷ 0,5

и рассчитываем температуру удаляемого воздуха

tY = tB + grad t(H — hр.з.), ºС

где: Н — высота помещения, м;
hр.з. — высота рабочей зоны, м.

Границы оптимальных параметров при кондиционировании

9. Для ассимиляции температуру приточного воздуха — tП принимаем на 4 ÷ 5ºС ниже температуры внутреннего воздуха - tВ, в рабочей зоне помещения.

10. Определяем численное значение величины тепло-влажностного отношения

Определяем численное значение величины тепло-влажностного отношения

11. На J-d диаграмме точку 0,0 °С шкалы температур соединяем прямой линией с численным значением тепло-влажностного отношения (для нашего примера численное значение величины тепло-влажностного отношения принимаем 3 800).

12. На J-d диаграмме проводим изотерму приточного — tП, с численным значением

tП = tВ — 5, °С.

13. На J-d диаграмме проводим изотерму уходящего воздуха с численным значением уходящего воздуха — tУ, найденным в пункте 8.

14. Через точку внутреннего воздуха — (•) В, проводим линию, которая параллельна линии тепло-влажностного отношения.

15. Пересечение этой линии, которая будет называться — лучом процесса

Пересечение этой линии, которая будет называться - лучом процесса

с изотермами приточного и уходящего воздуха — tП и tУ определит на J-d диаграмме точку приточного воздуха — (•) П и точку уходящего воздуха — (•) У.

16. Определяем воздухообмен по полному теплу

Определяем воздухообмен по полному теплу

и воздухообмен на ассимиляцию избытков влаги

воздухообмен на ассимиляцию избытков влаги

Внимание!

Остается самое главное, а именно как из точки — ( • ) Н, с параметрами наружного воздуха tН„Б“, °С и JН„Б“, кДж/кг попасть в точку ( • ) П, с параметрами приточного воздуха.

Возможно несколько решений этой задачи, а именно:

1. Классический вариант (см. рисунок 2).

Для обработки наружного приточного воздуха используем секцию оросительной камеры и секцию калорифера 2-го подогрева.

1. На J-d диаграмме из точки приточного воздуха — (•) П, проводим линию постоянного влагосодержания d = const, до пересечения с линией относительной влажности φ = 90% . Это стабильный вариант работы оросительной камеры.

Получаем точку (•) О, которая характеризует параметры увлажнённого и охлаждённого воздуха в оросительной камере.

2. Соединяем прямой линией точку с параметрами наружного воздуха — (•) Н, с точкой с параметрами увлажнённого и охлаждённого воздуха — (•) О. Эта прямая линия на J-d диаграмме характеризует политропический процесс, при котором все параметры обрабатываемого воздуха изменяются.

Для получения политропического процесса вода, поступающая из системы хозяйственно – питьевого водопровода, подаётся на форсунки оросительной камеры, где подвергается мелко — дисперсному распылению.

Часть влаги уносится с приточным воздухом, увлажняя и охлаждая его, а оставшаяся часть влаги стекает в дренажный поддон оросительной камеры и удаляется системой дренажных трубопроводов в хозяйственно – фекальную канализацию.

Таким образом, температура воды, которая идёт на увлажнение приточного воздуха, остаётся всегда неизменной. Это обязательное условие при увлажнении воздуха по политропному процессу.

3. Линия НО — политропический процесс, который процесс увлажнения и охлаждения приточного воздуха. Линия ОП характеризует процесс нагрева воздуха в теплообменнике 2-го подогрева.

4. Подобная обработка наружного приточного воздуха не является идеальной и имеет ряд недостатков:

  • сначала воздух увлажняется и охлаждается в оросительной камере в тёплый период года — ТП, а затем нагревается в теплообменнике 2-го подогрева;
  • политропический процесс требует постоянного увеличенного водопотребления, так как вода, которая не пошла на увлажнение приточного воздуха, удаляется в систему хозяйственно – фекальной канализации;
  • в тёплый период года — ТП, в системе теплоснабжения калорифера 2-го подогрева будет являться теплоноситель из открытой системы горячего водоснабжения — ГВС, который по своим параметрам — температурному перепаду и по располагаемому давлению нестабилен.

Возможно, осуществить нагрев увлажнённого и охлаждённого воздуха в электрическом калорифере, но это повлечёт значительное увеличение энергетических затрат.

Принципиальная схема обработки приточного воздуха в тёплый период года – ТП для 1-го варианта – классического, смотри на рисунок 3.

Классический вариант

Принципиальная схема обработки приточного воздуха в тёплый период года

2. Второй вариант.

Для охлаждения наружного приточного воздуха в поверхностном воздухоохладителе возможны два случая:

Случай а (см. рисунок 4).

Абсолютная влажность воздуха или влагосодержание наружного воздуха — dH„Б“, меньше влагосодержания приточного воздуха — dП

dH„Б“ < dП г/кг.

1. В этом случаи необходимо охлаждать наружный приточный воздух — (•) Н на J-d диаграмме, до температуры приточного воздуха.

Процесс охлаждения воздуха в поверхностном воздухоохладителе на J-d диаграмме будет изображаться прямой линией НО. Процесс будет происходить с уменьшением теплосодержания — энтальпии, уменьшением температуры и увеличением относительной влажности наружного приточного воздуха. При этом влагосодержание воздуха остаётся неизменным.

2. Для того чтобы попасть из точки — (•) О, с параметрами охлаждённого воздуха в точку — (•) П, с параметрами приточного воздуха, необходимо воздух увлажнить паром.

При этом температура воздуха остаётся неизменной — t = const, и процесс на J-d диаграмме будет изображаться прямой линией — изотермой.

Принципиальная схема обработки приточного воздуха в тёплый период года — ТП, для 2-го варианта, случай а, смотри на рисунок 5.

Случай б (см. рисунок 6).

Абсолютная влажность воздуха или влагосодержание наружного воздуха — dH„Б“, больше влагосодержания приточного воздуха — dП

dH„Б“ > dП г/кг.

1. В этом случаи необходимо «глубоко» охлаждать приточный воздух. Т. е. процесс охлаждения воздуха на J - d диаграмме вначале будет изображаться прямой линией с постоянным влагосодержанием — dН = const, проведённой из точки с параметрами наружного воздуха — (•) Н, до пересечения с линией относительной влажности — φ = 100%. Полученная точка называется — точка росыТ.Р. наружного воздуха.

2. Далее процесс охлаждения от точки росы пойдет по линии относительной влажности φ = 100% до конечной точки охлаждения — (•) О. Численное значение влагосодержания воздуха с точке (•) О равно численному значению влагосодержания воздуха в точке притока — (•) П.

3. Далее необходимо нагреть воздух от точки — (•) О, до точки приточного воздуха — (•) П. Процесс нагревания воздуха будет происходить с постоянным влагосодержанием.

Принципиальная схема обработки приточного воздуха в тёплый период года — ТП, для 2-го варианта, случай б, смотри на рисунок 7.

Случай а

Принципиальная схема обработки приточного воздуха в тёплый период года

Случай б

Принципиальная схема обработки приточного воздуха в тёплый период года

3. Третий вариант.

Возможно, часть наружного приточного воздуха пропускать по байпасу, а затем смешивать часть охлаждённого приточного воздуха с воздухом, проходящим по байпасу, чтобы параметры воздуха в точке смеси — (•) С, имели бы параметры приточного воздуха в точке — (•) П.

В нашем курсе этот вариант не рассматривается.

Холодный период года — ХП.

1. При кондиционировании воздуха в холодный период года — ХП изначально принимаются оптимальные параметры внутреннего воздуха в рабочей зоне помещения:

tВ = 20 ÷ 22ºC;  φВ = 30 ÷ 55%.

2. Изначально на J-d диаграмму по двум известным параметрам влажного воздуха наносим точки (см. рисунок 8):

  • наружного воздуха (•) Н tН = - 28ºC;   JН = - 27,3 кДж/кг;
  • внутреннего воздуха (•) В tВ = 22ºC;   φВ = 30% с минимальной относительной влажностью;
  • внутреннего воздуха (•) В1 tВ1 = 22ºC;   φВ1 = 55% с максимальной относительной влажностью.

При наличии тепловых избытков в помещении целесообразно принять верхний температурный параметр внутреннего воздуха в помещении из зоны оптимальных параметров.

3. Составляем тепловой баланс помещения по холодному периоду года — ХП:

  • по явному теплу ∑QХПЯ
    по полному теплу ∑QХПП

4. Рассчитываем поступления влаги в помещение

∑W

5. Определяем тепловую напряженность помещения по формуле:

Определяем тепловую напряженность помещения

где: V — объем помещения, м3.

6. Исходя из величины теплового напряжения, находим градиент нарастания температуры по высоте помещения.

Градиент температуры воздуха по высоте помещений общественных и гражданских зданий.

Тепловая напряженность помещения QЯ/Vпом.grad t, °C
кДж/м3Вт/м3
Более 80Более 230,8 ÷ 1,5
40 ÷ 8010 ÷ 230,3 ÷ 1,2
Менее 40Менее 100 ÷ 0,5

и рассчитываем температуру удаляемого воздуха

tY = tB + grad t(H – hр.з.), ºС

где: Н — высота помещения, м;
hр.з. — высота рабочей зоны, м.

7. Для ассимиляции избытков тепла и влаги в помещении температуру приточного воздуха — tП, принимаем на 4 ÷ 5ºС ниже температуры внутреннего воздуха — tВ, в рабочей зоне помещения.

8. Определяем численное значение величины тепло-влажностного отношения

Определяем численное значение величины тепло-влажностного отношения

9. На J-d диаграмме точку 0,0°С шкалы температур соединяем прямой линией с численным значением тепло-влажностного отношения (для нашего примера численное значение величины тепло-влажностного отношения принимаем 5 800).

10. На J-d диаграмме проводим изотерму приточного — tП, с численным значением

tП = tВ — 5, °С.

11. На J-d диаграмме проводим изотерму уходящего воздуха с численным значением уходящего воздуха — tУ, найденным в пункте 6.

12. Через точки внутреннего воздуха — (•) В, (•) В1, проводим линии, которые параллельны линии тепло-влажностного отношения.

13. Пересечение этих линий, которые будет называться — лучами процесса

лучи процесса

с изотермами приточного и уходящего воздуха — tП и tУ определит на J-d диаграмме точки приточного воздуха — (•) П, (•) П1 и точки уходящего воздуха — (•) У, (•) У1.

14. Определяем воздухообмен по полному теплу

Определяем воздухообмен по полному теплу

и воздухообмен на ассимиляцию избытков влаги

воздухообмен на ассимиляцию избытков влаги

Внимание!

Остается самое главное, а именно как из точки — (•) Н, с параметрами наружного воздуха t Н„Б“, °С и JН„Б“, кДж/кг попасть в точку (•) П, с параметрами приточного воздуха.

Возможно несколько решений этой задачи, а именно:

1. Первый способ – классический (см. рисунок 8)

1. Процессы обработки наружного воздуха:

  • нагрев наружного воздуха в калорифере 1-го подогрева;
  • увлажнение по адиабатному циклу;
  • нагрев в калорифере 2-го подогрева.

Построение процессов обработки воздуха на J-d диаграмме.

2. Из точки с параметрами наружного воздуха — (•) Н проводим линию постоянного влагосодержания — dН = const.

Эта линия характеризует процесс нагревания наружного воздуха в калорифере 1-го подогрева. Конечные параметры наружного воздуха после его нагревания будут определены в пункте 8.

3. Из точки с параметрами приточного воздуха — (•) П проводим линию постоянного влагосодержания dП = const до пересечения с линией относительной влажности φ = 90% (эту относительную влажность стабильно обеспечивает оросительная камера при адиабатическом увлажнении).

Получаем точку — (•) О с параметрами увлажнённого и охлаждённого приточного воздуха.

4. Через точку — (•) О проводим линию изотермы — tО = const до пересечения со шкалой температур.

Значение температуры в точке — (•) О близко к 0°С. Поэтому в оросительной камере возможно образование тумана.

5. Следовательно, в зоне оптимальных параметров внутреннего воздуха в помещении необходимо выбрать другую точку внутреннего воздуха — (•) В1 с той же температурой — tВ1 = 22°С, но с большей относительной влажностью — φВ1 = 55%.

В нашем случае точка — (•) В1 принималась с самой максимальной относительной влажностью из зоны оптимальных параметров. При необходимости возможно принять и промежуточную относительную влажность из зоны оптимальных параметров.

6. Аналогично пункту 3. Из точки с параметрами приточного воздуха — (•) П1 проводим линию постоянного влагосодержания dП1 = const до пересечения с линией относительной влажности φ = 90% .

Получаем точку — (•) О1 с параметрами увлажнённого и охлаждённого приточного воздуха.

7. Через точку — (•) О1 проводим линию изотермы — tО1 = const до пересечения со шкалой температур и считываем численное значение температуры увлажнённого и охлаждённого воздуха.

Первый способ – классический

Важное замечание!

Минимальное значение конечной температуры воздуха при адиабатическом увлажнении должно находиться в пределах 5 ÷ 7°С.

8. Из точки с параметрами приточного воздуха — (•) П1 проводим линию постоянного теплосодержания — JП1 = сonst до пересечения с линией постоянного влагосодержания наружного воздуха — точка (•) Н — dН = const.

Получаем точку — (•) К1 с параметрами нагретого наружного воздуха в калорифере 1-го подогрева.

9. Процессы обработки наружного воздуха на J-d диаграмме будут изображаться следующими линиями:

  • линия НК1 — процесс нагревания приточного воздуха в калорифере 1-го подогрева;
  • линия К1О1 — процесс увлажнения и охлаждения нагретого воздуха в оросительной камере;
  • линия О1П1 — процесс нагревания увлажнённого и охлаждённого приточного воздуха в калорифере 2-го подогрева.

10. Обработанный наружный приточный воздух с параметрами в точке — (•) П1 поступает в помещение и ассимилирует избытки теплоты и влаги по лучу процесса — линия П1В1. За счёт нарастания температуры воздуха по высоте помещения — grad t. Параметры воздуха изменяются. Процесс изменения параметров происходит по лучу процесса до точки уходящего воздуха — (•) У1.

11. Необходимое количество приточного воздуха для ассимиляции избытков теплоты и влаги в помещении определяем по формуле

Необходимое количество приточного воздуха для ассимиляции избытков теплоты и влаги в помещении

12. Требуемое количество теплоты для нагрева наружного воздуха в калорифере 1-го подогрева

Q1 = GΔJ(JK1 — JH) = GΔJ(tK1 — tH), кДж/ч

13. Необходимое количество влаги для увлажнения приточного воздуха в оросительной камере

W = GΔJ(dO1 — dK1), г/ч

14. Требуемое количество теплоты для нагрева увлажнённого и охлаждённого приточного воздуха в калорифере 2-го подогрева

Q2 = GΔJ(JП1 — JO1) = GΔJ x C(tП1 — tO1), кДж/ч

Величину удельной теплоёмкости воздуха С принимаем:

C = 1,005 кДж/(кг × °С).

Чтобы получить тепловую мощность калориферов 1-го и 2-го подогрева в кВт необходимо величины Q1 и Q2 в размерности кДж/ч разделить на 3600.

Принципиальная схема обработки приточного воздуха в холодный период года — ХП, для 1-го способа — классического, смотри на рисунок 9.

Принципиальная схема обработки приточного воздуха в холодный период года

2. Второй способ обработки наружного воздуха позволяет избежать нагревания его в калорифере 2-го подогрева (см. рисунок 10).

Построение процессов обработки воздуха на J-d диаграмме.

1. Параметры внутреннего воздуха выбираем из зоны оптимальных параметров:

  • температуру – максимальную tВ = 22°С;
  • относительную влажность – минимальную φВ = 30%.

2. По двум известным параметрам внутреннего воздуха находим точку на J-d диаграмме — (•) В.

3. Температуру приточного воздуха принимаем на 5°С меньше температуры внутреннего воздуха

tП = tВ — 5, °С.

На J-d диаграмме проводим изотерму приточного воздуха — tП.

4. Через точку с параметрами внутреннего воздуха — (•) В проводим луч процесса с численным значением тепло-влажностного отношения

ε = 5 800 кДж/кг Н2О

до пересечения с изотермой приточного воздуха — tП

Получаем точку с параметрами приточного воздуха — (•) П.

5. Из точки с параметрами наружного воздуха — (•) Н проводим линию постоянного влагосодержания — dН = const.

6. Из точки с параметрами приточного воздуха — (•) П проводим линию постоянного теплосодержания — JП = const до пересечения с линиями:

  • относительной влажности φ = 90%.

Получаем точку с параметрами увлажнённого и охлаждённого приточного воздуха — (•) О.

  • постоянного влагосодержания наружного воздуха — dН = const.

Получаем точку с параметрами нагретого в калорифере приточного воздуха — (•) К.

7. Часть нагретого приточного воздуха пропускаем через оросительную камеру, оставшуюся часть воздуха пропускаем по байпасу, минуя оросительную камеру.

8. Смешиваем увлажнённый и охлаждённый воздух с параметрами в точке — (•) О с воздухом, проходящим по байпасу, с параметрами в точке — (•) К в таких пропорциях, чтобы точка смеси — (•) С совместилась с точкой приточного воздуха — (•) П:

  • линия КО — общее количество приточного воздуха — GП;
  • линия КС — количество увлажнённого и охлаждённого воздуха — GО;
  • линия СО — количество воздуха, проходящего по байпасу — GП — GО.

Второй способ обработки наружного воздуха позволяет избежать нагревания его в калорифере 2-го подогрева

Принципиальная схема обработки приточного воздуха в холодный период года

9. Процессы обработки наружного воздуха на J-d диаграмме будут изображаться следующими линиями:

  • линия НК — процесс нагревания приточного воздуха в калорифере;
  • линия КС — процесс увлажнения и охлаждения части нагретого воздуха в оросительной камере;
  • линия СО — байпасирование нагретого воздуха минуя оросительную камеру;
  • линия КО — смешение увлажнённого и охлаждённого воздуха с нагретым воздухом.

10. Обработанный наружный приточный воздух с параметрами в точке — (•) П поступает в помещение и ассимилирует избытки теплоты и влаги по лучу процесса — линия ПВ. За счёт нарастания температуры воздуха по высоте помещения — grad t. Параметры воздуха изменяются. Процесс изменения параметров происходит по лучу процесса до точки уходящего воздуха — (•) У.

11. Количество воздуха, проходящего через оросительную камеру можно определить по отношению отрезков

Количество воздуха, проходящего через оросительную камеру можно определить по отношению отрезков

12. Необходимое количество влаги для увлажнения приточного воздуха в оросительной камере

W = GO(dП — dH), г/ч

Принципиальная схема обработки приточного воздуха в холодный период года — ХП, для 2-го способа, смотри на рисунок 11.

3. Третий способ самый простой – увлажнение наружного приточного воздуха в паровом увлажнителе (см. рисунок 12).

Построение процессов обработки воздуха на J-d диаграмме.

1. Определение параметров внутреннего воздуха — (•) В и нахождение точки на J-d диаграмме смотри пункты 1 и 2.

2. Определение параметров приточного воздуха — (•) П смотри пункты 3 и 4.

3. Из точки с параметрами наружного воздуха — (•) Н проводим линию постоянного влагосодержания — dН = const до пересечения с изотермой приточного воздуха — tП. Получим точку — (•) К с параметрами нагретого наружного воздуха в калорифере.

4. Процессы обработки наружного воздуха на J-d диаграмме будут изображаться следующими линиями:

  • линия НК — процесс нагревания приточного воздуха в калорифере;
  • линия КП — процесс увлажнения нагретого воздуха паром.

5. Далее аналогично пункту 10.

6. Количество приточного воздуха определяем по формуле

Количество приточного воздуха

Принципиальная схема обработки приточного воздуха в холодный период года

Принципиальная схема обработки приточного воздуха в холодный период года

7. Количество пара на увлажнение нагретого приточного воздуха рассчитываем по формуле

W = GП(dП — dK), г/ч

8. Количество тепла на нагрев приточного воздуха

Q = GП(JK — JH) = GП x C(tK — tH),  кДж/ч

где: С = 1,005 кДж/(кг × ºС) – удельная теплоемкость воздуха.

Для получения тепловой мощности калорифера в кВт, необходимо величину Q кДж/ч разделить на 3600 кДж/(ч × кВт).

Принципиальная схема обработки приточного воздуха в холодный период года ХП, для 3-го способа, смотри на рисунке 13.

Такое увлажнение применяется, как правило, для отраслей: медицинской, радиоэлектронной, пищевой и т.п.

3. Четвертый способ (см. рисунок 14) .

Применение сотовых увлажнителей дает возможность наиболее оптимального с точки зрения затрат энергии решить вопрос увлажнения воздуха. Задавшись фронтальной скоростью движения Vф = 2,3 м/сек приточного воздуха в сотовом увлажнителе можно достичь относительной влажности приточного воздуха:

  • при глубине сотовой насадки 100ммφ = 45%;
  • при глубине сотовой насадки 200ммφ = 65%;
  • при глубине сотовой насадки 300ммφ = 90%.

Построение процессов обработки воздуха на J-d диаграмме.

1. Параметры внутреннего воздуха выбираем из зоны оптимальных параметров:

  • температуру – максимальную tВ = 22°С;
  • относительную влажность – минимальную φВ = 30%.

2. По двум известным параметрам внутреннего воздуха находим точку на J-d диаграмме — (•) В.

3. Температуру приточного воздуха принимаем на 5°С меньше температуры внутреннего воздуха

tП = tВ — 5, °С.

На J-d диаграмме проводим изотерму приточного воздуха — tП.

4. Через точку с параметрами внутреннего воздуха — (•) В проводим луч процесса с численным значением тепло-влажностного отношения

ε = 5 800 кДж/кг Н2О

до пересечения с изотермой приточного воздуха — tП.

Получаем точку с параметрами приточного воздуха — (•) П.

Четвертый способ

5. Из точки с параметрами наружного воздуха — (•) Н проводим линию постоянного влагосодержания — dН =  const.

6. Из точки с параметрами приточного воздуха — (•) П проводим линию постоянного теплосодержания — JП = const до пересечения с линиями:

  • относительной влажности φ = 65%.

Получаем точку с параметрами увлажнённого и охлаждённого приточного воздуха — (•) О.

  • постоянного влагосодержания наружного воздуха — dН = const.

Получаем точку с параметрами нагретого в калорифере приточного воздуха — (•) К.

7. Часть нагретого приточного воздуха пропускаем через сотовый увлажнитель, оставшуюся часть воздуха пропускаем по байпасу, минуя сотовый увлажнитель.

8. Смешиваем увлажнённый и охлаждённый воздух с параметрами в точке — (•) О с воздухом, проходящим по байпасу, с параметрами в точке — (•) К в таких пропорциях, чтобы точка смеси — (•) С совместилась с точкой приточного воздуха — (•) П:

  • линия КО — общее количество приточного воздуха — GП;
  • линия КС — количество увлажнённого и охлаждённого воздуха — GО;
  • линия СО — количество воздуха, проходящего по байпасу — GП — GО.

9. Процессы обработки наружного воздуха на J-d диаграмме будут изображаться следующими линиями:

  • линия НК — процесс нагревания приточного воздуха в калорифере;
  • линия КС — процесс увлажнения и охлаждения части нагретого воздуха в сотовом увлажнителе;
  • линия СО — байпасирование нагретого воздуха, минуя сотовый увлажнитель;
  • линия КО — смешение увлажнённого и охлаждённого воздуха с нагретым воздухом.

10. Обработанный наружный приточный воздух с параметрами в точке — (•) П поступает в помещение и ассимилирует избытки теплоты и влаги по лучу процесса — линия ПВ. За счёт нарастания температуры воздуха по высоте помещения — grad t. Параметры воздуха изменяются. Процесс изменения параметров происходит по лучу процесса до точки уходящего воздуха — (•) У.

11. Количество воздуха, проходящего через оросительную камеру можно определить по отношению отрезков

Количество воздуха, проходящего через оросительную камеру можно определить по отношению отрезков

12. Необходимое количество влаги для увлажнения приточного воздуха в оросительной камере

Необходимое количество влаги для увлажнения приточного воздуха в оросительной камере

Принципиальная схема обработки приточного воздуха в холодный период года — ХП, для 4-го способа, смотри на рисунок 15.

Принципиальная схема обработки приточного воздуха в холодный период года

Однако, вероятность совпадения количества подачи приточного воздуха, рассчитанная для ТП и ХП очень мала.

Нахождение общего решения.

Возможны три варианта решения этой проблемы.

1. Первый вариант

Принять количество наружного приточного воздуха по холодному периоду года (ХП) — GХП равное количеству наружного приточного воздуха по тёплому периоду года (ТП) — GТП, т. е.

GХП = GТП = G.

В этом случае придётся выполнить перерасчёт параметров приточного воздуха в точке — (•) П для холодного периода года — (ХП).

Для этого определяют приращение теплосодержания или влагосодержания в приточном воздухе в холодный период года — (ХП).

Для этого определяют приращение теплосодержания или влагосодержания в приточном воздухе в холодный период года

и на пересечении с лучом процесса по холодному периода года — εХП получаем точку — (•) П с пересчитанными параметрами приточного воздуха.

Этот вариант самый простой, но и самый затратный.

2. Второй вариант — применяя рециркуляцию воздуха.

А) Оптимальное применение рециркуляции (см. рисунок 16).

Для резко континентального климата территории России в холодный период года — ХП смешивание уходящего вытяжного внутреннего воздуха с наружным приточным воздухом в секции камеры рециркуляции центрального кондиционера возможно лишь в том случае, когда температура точки смеси — (•) С является положительной и находится в пределах

tС = 5 ÷ 7, °С.

В этом случае количество наружного воздуха — GН, кг/ч составляет 25 ÷ 30% от общего количества приточного воздуха — GП, кг/ч.

Причём, это количество наружного воздуха должно быть не меньше минимальной санитарной нормы подачи наружного воздуха на одного человека.

Принципиальная схема обработки приточного воздуха для 2-го варианта, оптимального применения рециркуляции А) смотри на рисунок 17.

Оптимальное применение рециркуляции

Принципиальная схема обработки приточного воздуха для 2-го варианта

Принципиальная схема обработки приточного воздуха

Если из J-d диаграммы следует, что количество наружного воздуха — GН, кг/ч, принятое по санитарной норме подачи наружного воздуха на одного человека, оказалось больше 30% от общего количества воздуха, то в этом случаи необходимо:

  • увеличить общее количество приточного воздуха — GП, кг/ч с таким условием, чтобы количество наружного воздуха было бы 25 ÷ 30% от общего количества приточного воздуха (смотри рисунок 17).

Или

  • наружный приточный воздух предварительно подогреть в калорифере до положительной температуры в пределах 5 ÷ 7 °С, и только после этого смешивать его с воздухом, идущим на рециркуляцию (смотри рисунок 18).

Б) Применение рециркуляции с камерой орошения (см. рисунок 19) .

1. Общее количество приточного воздуха принимаем по тёплому периоду года — ТП

GПТП, кг/ч.

2. Количество наружного приточного воздуха принимаем по нормативному воздухообмену

Gнорм., кг/ч.

3. Количество воздуха, идущего на рециркуляцию, определяем по формуле

GP = GПТП — Gнорм., кг/ч.

4. Численное значение влагосодержания смеси определяем из уравнения смеси

Численное значение влагосодержания смеси определяем из уравнения смеси

Построение процессов обработки воздуха на J-d диаграмме.

5. Параметры внутреннего воздуха выбираем из зоны оптимальных параметров:

  • температуру – максимальную tВ = 22°С;
  • относительную влажность – минимальную φВ = 30%.

6. По двум известным параметрам находим на J-d диаграмме точку внутреннего воздуха — (•) В.

7. Температуру приточного воздуха принимаем на 5 °С меньше температуры внутреннего воздуха

tП = tВ — 5, °С.

На J-d диаграмме проводим изотерму приточного воздуха — tП.

8. Составляем тепловой баланс помещения по холодному периоду года — ХП:

  • по явному теплу ΣQХПЯ, Вт;
  • по полному теплу ΣQХПП, кДж/ч.

9. Рассчитываем поступления влаги в помещение

ΣW, кг/ч.

10. Определяем тепловую напряженность помещения по формуле

Определяем тепловую напряженность помещения

где: V — объем помещения, м3.

11. Исходя из величины теплового напряжения, находим градиент нарастания температуры по высоте помещения и рассчитываем температуру удаляемого воздуха

tY = tB + grad t(H — hр.з), ºС

где: Н — высота помещения, м;
hр.з. — высота рабочей зоны, м.

На J-d диаграмме проводим изотерму уходящего воздуха — tУ.

12. Через точку с параметрами внутреннего воздуха — (•) В проводим луч процесса с численным значением тепло-влажностного отношения

ε = 5 800 кДж/кг Н2О

до пересечения с изотермой приточного воздуха — tП и с изотермой уходящего воздуха — tУ.

Получаем точку с параметрами приточного воздуха — (•) П и точку с параметрами уходящего воздуха — (•) У.

13. Из точки с параметрами наружного воздуха — (•) Н проводим линию постоянного влагосодержания — dН = const.

14. На J-d диаграмме проводим линию постоянного влагосодержания с численным значением влагосодержания смеси — dC1, найденным из уравнения смеси в пункте 4.

15. Из точки с параметрами приточного воздуха — (•) П проводим линию постоянного теплосодержания — JП = const до пересечения с линиями:

  • относительной влажности φ = 90%.

Получаем точку с параметрами увлажнённого и охлаждённого приточного воздуха — (•) О.

  • и с линией постоянного влагосодержания смеси — dC1.

Получаем точку с параметрами смеси воздуха уходящего и воздуха наружного нагретого в калорифере — (•) С1.

16. Часть приточного воздуха с параметрами в точке смеси — (•) С1 пропускаем через оросительную камеру увлажняя и охлаждая его, оставшуюся часть воздуха пропускаем по байпасу, минуя оросительную камеру.

17. Смешиваем увлажнённый и охлаждённый воздух с параметрами в точке — (•) О с воздухом, проходящим по байпасу с параметрами в точке — (•) С1 в таких пропорциях, чтобы точка смеси — (•) С2 совместилась с точкой приточного воздуха — (•) П:

  • линия С1О — общее количество приточного воздуха — GПТП;
  • линия С1С2 — количество увлажнённого и охлаждённого воздуха;
  • линия С2О — количество, проходящего по байпасу.

Расчет воздухообмена при кондиционировании

18. Соединяем прямой линией точку с параметрами уходящего воздуха — (•) У с точкой с параметрами смешанного воздуха — (•) С1 и далее до пересечения с линией постоянного влагосодержания наружного воздуха — dН.

Получаем точку — (•) Кс параметрами нагретого в калорифере наружного воздуха в количестве нормативного воздухообмена — Gнорм., кг/ч.

19. Смешиваем нагретый наружный воздух с параметрами в точке — (•) К с частью уходящего вытяжного воздуха с параметрами в точке — (•) У в таких пропорциях, чтобы точка смеси — (•) С1 находилась на пересечении линии смеси и линии постоянного теплосодержания приточного воздуха — JП:

  • линия КУ — общее количество приточного воздуха — GПТП;
  • линия С1У — количество нагретого наружного воздуха — Gнорм.; кг/ч;
  • линия С1К — количество, воздуха идущего на рециркуляцию — GР = GПТП — Gнорм.кг/ч

20. Количество воздуха, проходящего через оросительную камеру можно определить по отношению отрезков

Количество воздуха, проходящего через оросительную камеру

21. Необходимое количество влаги для увлажнения приточного воздуха в оросительной камере

W = GПТП (dП — dC1), г/ч

22. Обработанный наружный приточный воздух с параметрами в точке — (•) П поступает в помещение и ассимилирует избытки теплоты и влаги по лучу процесса — линия ПВ. За счёт нарастания температуры воздуха по высоте помещения — grad t параметры воздуха изменяются. Процесс изменения параметров происходит по лучу процесса до точки уходящего воздуха — (•) У.

Этот вариант с рециркуляцией воздуха значительно сокращает расход тепла — нагревать воздух надо не весь, а только воздух по нормативному воздухообмену Gнорм. и уменьшает расход влаги в оросительной камере.

Принципиальная схема обработки приточного воздуха для 2-го варианта, применение рециркуляции с камерой орошения Б) смотри на рисунок 20.

Принципиальная схема обработки приточного воздуха для 2-го варианта

В) Применение рециркуляции и увлажнение паром (см. рисунок 21).

Этот вариант обработки приточного воздуха схож с вариантом Б.

1. Общее количество приточного воздуха принимаем по тёплому периоду года — ТП

GПТП, кг/ч.

2. Количество наружного приточного воздуха принимаем по нормативному воздухообмену

Gнорм., кг/ч.

3. Количество воздуха, идущего на рециркуляцию, определяем по формуле

GP = GПТП — Gнорм., г/ч.

4. Численное значение влагосодержания смеси определяем из уравнения смеси

Численное значение влагосодержания смеси

Построение процессов обработки воздуха на J-d диаграмме.

5. Параметры внутреннего воздуха выбираем из зоны оптимальных параметров:

  • температуру – максимальную tВ = 22 °С;
  • относительную влажность – минимальную φВ = 30%.

6. По двум известным параметрам находим на J-d диаграмме точку внутреннего воздуха — (•) В.

7. Температуру приточного воздуха принимаем на 5 °С меньше температуры внутреннего воздуха

tП = tВ — 5, °С.

На J-d диаграмме проводим изотерму приточного воздуха — t П.

8. Составляем тепловой баланс помещения по холодному периоду года — ХП:

  • по явному теплу ΣQЯХП, Вт;
  • по полному теплу ΣQПХП, кДж/ч.

9. Рассчитываем поступления влаги в помещение

ΣW, кг/ч.

10. Определяем тепловую напряженность помещения по формуле

Определяем тепловую напряженность помещения

где: V — объем помещения, м3.

11. Исходя из величины теплового напряжения, находим градиент нарастания температуры по высоте помещения и рассчитываем температуру удаляемого воздуха

tY = tB + grad t (H — hр.з.), ºС

где: Н — высота помещения, м;
hр.з. — высота рабочей зоны, м.
На J-d диаграмме проводим изотерму уходящего воздуха — tУ.

12. Через точку с параметрами внутреннего воздуха — (•) В проводим луч процесса с численным значением тепло-влажностного отношения

ε = 5 800 кДж/кг Н2О

до пересечения с изотермой приточного воздуха — tП и с изотермой уходящего воздуха — tУ.

Получаем точку с параметрами приточного воздуха — (•) П и точку с параметрами уходящего воздуха — (•) У.

13. Из точки с параметрами наружного воздуха — (•) Н проводим линию постоянного влагосодержания — dН = const.

14. На J-d диаграмме проводим линию постоянного влагосодержания с численным значением влагосодержания смеси — dC, найденным из уравнения смеси в пункте 4.

15. Пересечение изотермы приточного воздуха — tП с линией постоянного влагосодержания смеси — dС определит на J-d диаграмме точку смеси — (•) С.

16. Соединяем прямой линией точку с параметрами уходящего воздуха — (•) У, с точкой с параметрами смешанного воздуха — (•) С. Далее проводим прямую до пересечения с линией постоянного влагосодержания наружного воздуха — dН.

Получаем точку — (•) К с параметрами нагретого в калорифере наружного воздуха в количестве нормативного воздухообмена — Gнорм., кг/ч.

17. Смешиваем нагретый наружный воздух с параметрами в точке — (•) К с частью уходящего вытяжного воздуха с параметрами в точке — (•) У в таких пропорциях, чтобы точка смеси — (•) С находилась на пересечении линии смеси и линии изотермы приточного воздуха — tП

  • линия КУ — общее количество приточного воздуха — GПТП;
  • линия СУ — количество нагретого наружного воздуха — Gнорм.; кг/ч;
  • линия КС — количество воздуха, идущего на рециркуляцию — GP = GПТП — Gнорм., кг/ч

18. Необходимое количество пара для увлажнения приточного воздуха в паровом увлажнителе

W = GПТП (DП — dC), г/ч

Применение рециркуляции и увлажнение паром

19. Обработанный наружный приточный воздух с параметрами в точке — (•) П поступает в помещение и ассимилирует избытки теплоты и влаги по лучу процесса — линия ПВ. За счёт нарастания температуры воздуха по высоте помещения — grad t параметры воздуха изменяются. Процесс изменения параметров происходит по лучу процесса до точки уходящего воздуха — (•) У.

Этот вариант с рециркуляцией воздуха значительно сокращает расход тепла — нагревать воздух надо не весь, а только воздух по нормативному воздухообмену Gнорм..

Принципиальная схема обработки приточного воздуха для 2-го варианта, применение рециркуляции и увлажнение паром В) смотри на рисунок 22.

Принципиальная схема обработки приточного воздуха для 2-го варианта