2.2 Схема компрессионного цикла охлаждения - УКЦ

Вначале следует отметить, что кондиционер — это та же холодильная машина, но предназначенная для тепло-влажностной обработки воздушного потока. Кроме того, кондиционер обладает большими возможностями, более сложной конструкцией, многочисленными дополнительными опциями и т.п.

Обработка воздуха предполагает придание ему определённых кондиций, таких как температура и влажность, а также направление движения и подвижность (скорость движения).

Остановимся на принципе работы и физических процессах, происходящих в холодильной машине.

Охлаждение в кондиционере, или далее по тексту в холодильной машине, обеспечивается непрерывной циркуляцией, кипением и конденсацией хладагента в замкнутой системе. Кипение хладагента происходит при низком давлении и низкой температуре, а конденсация — при высоком давлении и высокой температуре. Принципиальная схема компрессионного цикла охлаждения показана на Рис. 1.

Принципиальная схема компрессионного цикла охлаждения.

Принципиальная схема компрессионного цикла охлаждения

Рисунок 1

Начнём рассмотрение работы цикла с выхода хладагента из испарителя (участок 1-1). Здесь хладагент находится в парообразном состоянии, с низким давлением и температурой.

Парообразный хладагент всасывается компрессором, который повышает его давление до 15 — 25 атм. и температуру до 70 — 90 ºС_(участок 2-2).

Далее, в конденсаторе горячий парообразный хладагент охлаждается и конденсируется, т.е. переходит в жидкую фазу. Конденсатор может быть либо с воздушным, либо с водяным охлаждением, в зависимости от типа холодильной машины.

На выходе из конденсатора (точка 3) хладагент находится в жидком состоянии при высоком давлении. Размеры конденсатора выбираются таким образом, чтобы газ полностью сконденсировался внутри конденсатора. Поэтому температура жидкости хладагента на выходе из конденсатора оказывается несколько ниже температуры конденсации паров. Переохлаждение в конденсаторах с воздушным охлаждением обычно составляет 4 — 7 ºС. При этом температура конденсации паров примерно на 10 — 12 ºС выше температуры атмосферного воздуха.

Затем хладагент в жидкой фазе при высокой температуре и давлении поступает в регулятор потока — капиллярная трубка или терморегулирующий расширительный клапан, где давление смеси резко уменьшается, часть жидкого хладагента при этом может испариться, переходя в парообразную фазу. Таким образом, в испаритель попадает смесь пара и жидкого хладагента (точка 4).

Жидкость кипит в испарителе, отбирая теплоту окружающего воздуха, и вновь переходит в парообразное состояние.

Размеры испарителя выбираются таким образом, чтобы жидкость полностью испарилась внутри испарителя. Поэтому температура пара на выходе из испарителя оказывается выше температуры кипения, происходит так называемый перегрев хладагента в испарителе. Для конденсаторов с воздушным охлаждением величина перегрева составляет 5 — 8 ºС. В этом случае, даже самые маленькие капельки хладагента испаряются, и в компрессор не попадает жидкий хладагент. Следует отметить, что в случаи попадания жидкого хладагента в компрессор возникает гидравлический удар и возможны повреждения и поломки клапанов и других деталей компрессора.

Перегретый парообразный хладагент выходит из испарителя (точка 1), и цикл возобновляется.

Таким образом, хладагент постоянно циркулирует по замкнутому контуру, изменяя своё агрегатное состояние с жидкого состояния на парообразное и наоборот.

Все компрессионные циклы холодильных машин включают два определённых уровня давления. Граница между ними проходит через нагнетательный клапан на выходе из компрессора с одной стороны и на выходе из регулятора потока — из капиллярной трубки или терморегулирующего расширительного клапана с другой стороны.

Нагнетательный клапан компрессора и выходное отверстие регулятора потока являются разделительными точками между сторонами высокого и низкого давлений хладагента в холодильной машине.

На стороне высокого давления находятся все элементы, работающие при давлении конденсации.

На стороне низкого давления находятся все элементы, работающие при давлении испарения.

Несмотря на то, что существует много типов компрессионных холодильных машин, принципиальная схема цикла в них практически одинакова.